在分析查询性能时,考虑EXPLAIN关键字同样很管用。EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数。explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作。
一、MySQL 查询优化器是如何工作的MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列:项 | 说明 |
id | MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。 |
select_type 查询类型 | 说明 |
SIMPLE | 简单的 select 查询,不使用 union 及子查询 |
PRIMARY | 最外层的 select 查询 |
UNION | UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集 |
DEPENDENT UNION | UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集 |
SUBQUERY | 子查询中的第一个 select 查询,不依赖于外 部查询的结果集 |
DEPENDENT SUBQUERY | 子查询中的第一个 select 查询,依赖于外部 查询的结果集 |
DERIVED | 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。 |
UNCACHEABLE SUBQUERY | 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。 |
UNCACHEABLE UNION | UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询 |
项 | 说明 |
table | 输出行所引用的表 |
type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 | 说明 |
system | 表仅有一行(=系统表)。这是 const 连接类型的一个特例。 |
const | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
eq_ref | const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。 |
ref | 连接不能基于关键字选择单个行,可能查找 到多个符合条件的行。 叫做 ref 是因为索引要 跟某个参考值相比较。这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值。 |
ref_or_null | 如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找。 |
index_merge | 说明索引合并优化被使用了。 |
unique_subquery | 在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr) |
index_subquery | 在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr) |
range | 只检索给定范围的行,使用一个索引来选择 行。key 列显示使用了哪个索引。当使用=、 <>、>、>=、<、<=、IS NULL、<=>、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range。 |
index | 全表扫描,只是扫描表的时候按照索引次序 进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。 |
all | 最坏的情况,从头到尾全表扫描。 |
项 | 说明 |
possible_keys | 指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。 |
项 | 说明 |
key | MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引 |
项 | 说明 |
key_len | 使用的索引的长度。在不损失精确性的情况 下,长度越短越好。 |
项 | 说明 |
ref | 显示索引的哪一列被使用了 |
项 | 说明 |
rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
项 | 说明 |
rows | MYSQL 认为必须检查的用来返回请求数据的行数 |
extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。
extra 项 | 说明 |
Using filesort | 表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序” |
Using temporary | 表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。 |
下面来举一个例子来说明下 explain 的用法。
先来一张表: 复制代码 代码如下:
CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT, `author_id` int(10) unsigned NOT NULL, `category_id` int(10) unsigned NOT NULL, `views` int(10) unsigned NOT NULL, `comments` int(10) unsigned NOT NULL, `title` varbinary(255) NOT NULL, `content` text NOT NULL, PRIMARY KEY (`id`) );
再插几条数据: 复制代码 代码如下:
INSERT INTO `article` (`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES (1, 1, 1, 1, '1', '1'), (2, 2, 2, 2, '2', '2'), (1, 1, 3, 3, '3', '3');
需求: 查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。 先查查试试看: 复制代码 代码如下:
EXPLAIN SELECT author_id FROM `article` WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1\G
看看部分输出结果: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 3 Extra: Using where; Using filesort 1 row in set (0.00 sec)
很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。
复制代码 代码如下:
ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );
结果有了一定好转,但仍然很糟糕: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: range possible_keys: x key: x key_len: 8 ref: NULL rows: 1 Extra: Using where; Using filesort 1 row in set (0.00 sec)
type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。 那么我们需要抛弃 comments,删除旧索引: 复制代码 代码如下:
DROP INDEX x ON article;
然后建立新索引: 复制代码 代码如下:
ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;
接着再运行查询: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: article type: ref possible_keys: y key: y key_len: 4 ref: const rows: 1 Extra: Using where 1 row in set (0.00 sec)
可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。 再来看一个多表查询的例子。 首先定义 3个表 class 和 room。 复制代码 代码如下:
CREATE TABLE IF NOT EXISTS `class` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT, `card` int(10) unsigned NOT NULL, PRIMARY KEY (`id`) ); CREATE TABLE IF NOT EXISTS `book` ( `bookid` int(10) unsigned NOT NULL AUTO_INCREMENT, `card` int(10) unsigned NOT NULL, PRIMARY KEY (`bookid`) ); CREATE TABLE IF NOT EXISTS `phone` ( `phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT, `card` int(10) unsigned NOT NULL, PRIMARY KEY (`phoneid`) ) engine = innodb;
然后再分别插入大量数据。插入数据的php脚本: 复制代码 代码如下:
<?php $link = mysql_connect("localhost","root","870516"); mysql_select_db("test",$link); for($i=0;$i<10000;$i++) { $j = rand(1,20); $sql = " insert into class(card) values({$j})"; mysql_query($sql); } for($i=0;$i<10000;$i++) { $j = rand(1,20); $sql = " insert into book(card) values({$j})"; mysql_query($sql); } for($i=0;$i<10000;$i++) { $j = rand(1,20); $sql = " insert into phone(card) values({$j})"; mysql_query($sql); } mysql_query("COMMIT"); ?>
然后来看一个左连接查询: 复制代码 代码如下:
explain select * from class left join book on class.card = book.card\G
分析结果是: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
显然第二个 ALL 是需要我们进行优化的。 建立个索引试试看: 复制代码 代码如下:
ALTER TABLE `book` ADD INDEX y ( `card`);
复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ref possible_keys: y key: y key_len: 4 ref: test.class.card rows: 1000 Extra: 2 rows in set (0.00 sec)
可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。 删除旧索引: 复制代码 代码如下:
DROP INDEX y ON book;
建立新索引。 复制代码 代码如下:
ALTER TABLE `class` ADD INDEX x ( `card`);
结果 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
基本无变化。 然后来看一个右连接查询: 复制代码 代码如下:
explain select * from class right join book on class.card = book.card;
分析结果是: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: class type: ref possible_keys: x key: x key_len: 4 ref: test.book.card rows: 1000 Extra: 2 rows in set (0.00 sec)
优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。 删除旧索引: 复制代码 代码如下:
DROP INDEX x ON class;
建立新索引。 复制代码 代码如下:
ALTER TABLE `book` ADD INDEX y ( `card`);
结果 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
基本无变化。
最后来看看 inner join 的情况:
复制代码 代码如下:
explain select * from class inner join book on class.card = book.card;
结果: 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: class type: ref possible_keys: x key: x key_len: 4 ref: test.book.card rows: 1000 Extra: 2 rows in set (0.00 sec)
删除旧索引: 复制代码 代码如下:
DROP INDEX y ON book;
结果 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
建立新索引。 复制代码 代码如下:
ALTER TABLE `class` ADD INDEX x ( `card`);
结果 复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: 2 rows in set (0.00 sec)
综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。
我们再来看看三表查询的例子
添加一个新索引:
复制代码 代码如下:
ALTER TABLE `phone` ADD INDEX z ( `card`); ALTER TABLE `book` ADD INDEX y ( `card`);
复制代码 代码如下:
explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;
复制代码 代码如下:
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: class type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 20000 Extra: *************************** 2. row *************************** id: 1 select_type: SIMPLE table: book type: ref possible_keys: y key: y key_len: 4 ref: test.class.card rows: 1000 Extra: *************************** 3. row *************************** id: 1 select_type: SIMPLE table: phone type: ref possible_keys: z key: z key_len: 4 ref: test.book.card rows: 260 Extra: Using index 3 rows in set (0.00 sec)
后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。 MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。 因此索引最好设置在需要经常查询的字段中。